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S1 Data
A field F (such as gravity or topography) may be expanded on a sphere as
follows16

F (θ,φ) =
∞∑

l=0

l∑

m=0

(Clm cosmφ+ Slm sinmφ)Plm(cos θ) (S1)

where Plm(cos θ) is a fully normalised associated Legendre function, θ is
colatitude, φ is longitude and Clm and Slm are spherical harmonic coefficients
of degree l and order m.

S1.1 Gravity Model
The description of Titan’s gravitational field3 is given as non-normalised, di-
mensionless potential coefficients Cg′

lm, Sg′

lm. To convert these to fully normalised
gravity coefficients, Cg

lm, Sg
lm, we write

{C, S}glm =

(
(2− δ0m)(2l + 1)

(l −m)!

(l +m)!

)− 1
2

(l + 1)
GM

R2
{C, S} g′

lm (S2)

where the square root term does the normalisation, the (l + 1) term arises
from the differentiation associated with converting from potential to gravity, the
GM
R2 term generates dimensional coefficients (which we will express in terms of
mGal = 10−5 ms−2), and δ0m is the Kronecker delta.

Three solutions have been derived3 for Titan’s gravity field. In the first two
(SOL1a and SOL1b), results from six Cassini gravity flybys were analysed sep-
arately and then combined into multi-arc solutions. Whereas SOL1a attempts
to model the gravity field only up to degree 3, SOL1b attempts to model the field
up to degree 4, but only as a means of verifying the robustness of the degree-3
solution. It is found that the degree-3 solution differs only modestly between
SOL1a and SOL1b. For the last solution (SOL2), a global model extending to
l = 3 was derived using Pioneer and Voyager data and satellite ephemerides
in addition to Cassini observations. In spite of the different approaches, the
SOL2 field closely resembles the SOL1a field. The SOL1b solution matches less
closely, likely because it also attempts to include the degree-4 component of the
field. Although all three solutions give a consistent estimate of the periodic k2
Love number (with a central value of 0.6), the static part of the degree-4 field
is currently not well constrained due to the limited nature of the observations.
Our calculations will be based primarily on the SOL1a gravity field.

S1.2 Topography Model
The non-normalised topography coefficients Ch′

lm, Sh′

lm are derived from a com-
bination of radar altimetry and analysis of the overlapping regions of radar
images, in a technique known as SAR topo9,13,14, and were used to derive shape
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solutions up to l = m = 11. Several distinct solutions were produced, depend-
ing on where the harmonic expansion was truncated. We denote these solutions
Deg4-exp, Deg5-exp, ... Deg11-exp, where the number indicates the highest
degree and order used to fit the observations.

Due to the large gaps in Cassini radar coverage (Figure S1), topography
models with power beyond degree 6 are not adequately constrained unless an a
priori restriction is applied (minimise rms deviation from best-fit sphere). Even
when a priori constraints are applied, the coefficients tend to be less stable
when the model’s expansion limit exceeds degree 6 (Figure S2). Likewise, the
resulting admittance estimates tend to be most stable for the topography models
with power limited to degree 6 or less (Figure S3).
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Figure S1: Cassini radar-derived elevation data for Titan. Elevation is given
relative to the 2575-km reference sphere.

For our purposes, we prefer to use the highest resolution data available
without requiring a priori constraints in the model fits. We therefore primarily
use the Deg6-exp model in our analysis. In the main text Fig. 1b and both
parts of Fig. 3, we use the Deg6-exp topography model 9, the coefficients for
which are given in Table S1. To convert from non-normalised coefficients to
fully normalised coefficients, Ch

lm, Sh
lm , we write

{C, S} h
lm =

(
(2− δ0m)(2l + 1)

(l −m)!

(l +m)!

)− 1
2

{C, S}h
′

lm (S3)
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Figure S2: Degree-3 normalised topography model9 coefficients (with 1-σ error
bars) as a function of the maximum spherical harmonic degree allowed when
fitting the data.
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Figure S3: Degree-3 admittance estimates corresponding to the topography
model coefficients shown in Figure S2 and the SOL1a gravity field3. Admittance
estimates are obtained as described in section S3.1, using a Monte Carlo analysis
(error bars illustrate the standard deviations of each Monte Carlo distribution).
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Table S1: Fully normalised Deg6-exp topography model9 coefficients (in
metres).

Term Estimate 1−sigma error
C00 2574750.0 6.0
C10 0.0 5.8
C11 23.1 5.2
S11 18.5 5.8
C20 −169.5 4.5
C21 −17.8 5.4
S21 31.8 7.0
C22 120.8 4.6
S22 20.1 4.6
C30 −4.9 3.8
C31 2.8 3.7
S31 −21.3 5.6
C32 −8.8 5.9
S32 −2.9 5.9
C33 0.0 7.2
S33 14.3 7.2
C40 −39.3 3.7
C41 22.1 3.2
S41 75.9 4.2
C42 4.5 4.5
S42 −26.8 4.5
C43 16.7 0.0
S43 −50.2 0.0
C44 0.0 0.0
S44 −47.3 0.0
C50 28.6 3.3
C51 −26.9 2.3
S51 −14.0 4.7
C52 37.1 6.2
S52 −12.4 6.2
C53 0.0 0.0
S53 0.0 0.0
C54 0.0 0.0
S54 0.0 0.0
C55 0.0 0.0
S55 0.0 0.0
C60 −2.5 3.1
C61 8.9 2.5
S61 −61.0 3.8
C62 −24.1 0.0
S62 0.0 0.0
C63 0.0 0.0
S63 0.0 0.0
C64 0.0 0.0
S64 0.0 0.0
C65 0.0 0.0
S65 0.0 0.0
C66 0.0 0.0
S66 0.0 0.0
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S2 Ice Shell Model

S2.1 Origin of long-wavelength topography
Titan’s shape is primarily determined by tides and rotation; the former resulting
in elongation along the tidal axis, and the latter in an equatorial bulge (flattening
at the poles). The degree-2 and degree-4 topography will also be affected by
variations in ice shell thickness that arise due to tidal heating7. As discussed
below, non-Newtonian flow within the lower part of the ice shell could cause
degree-3 shell thickness variations to develop from a pattern that is initially
confined to degrees 2 and 4. This may, in part, explain the source of the observed
degree-3 topography. Since ongoing tidal heating will support the maintenance
of shell thickness variations at degrees 2 and 4, those variations could persist
even as lower crustal flow (discussed below) continues to generate shell thickness
variations at degree 3.

Heterogeneities in the ice shell could also contribute to a departure from the
purely degree-2 and -4 pattern predicted from tidal heating and could thus be
responsible for part of the shell thickness variations, and therefore topography,
at degree 3.

S2.2 Ice shell structure
We follow the common strategy of modelling the ice shell as an elastic layer
overlying an inviscid layer. Roughly speaking, ice will undergo a transition
from elastic to viscous behaviour at temperatures in the range 160 − 180K,
depending on the exact strain rate and grain size assumed 30. For a conductive
ice shell with basal temperature Tb = 270K, the elastic thickness (T ) will then
be 38-50% of the total shell thickness (d), while if Tb = 210K, then T will be 58-
75% of d. While the transition from elastic to viscous behaviour will occur over
some finite region, that region will be thin because of the very strong variation
in viscosity with depth. Hence, our two-layer model is a good approximation.

Assuming a heat flux of F ≈ 4mW/m2 through Titan’s (conductive) ice
shell7, and allowing thermal conductivity to vary with temperature31, we can
estimate the shell’s elastic thickness (T ) according to T = 567 ln (Tz/Ts) /F ,
where Tz is the temperature at which the shell transitions from elastic to viscous
behaviour. The resulting estimated elastic thickness is T ≈ 82−98 km. Despite
the highly approximate nature of this analysis, it yields an elastic thickness that
is consistent with our estimates (see main text Fig. 3b).

Throughout our analysis, we assume the ice shell to be in an equilibrium state
where the various forces (flexure within the elastic part of the shell, weight of
the overlying topography, and buoyancy of the root) are in balance. This is
reasonable because the vertical response time of the shell (analogous to post-
glacial rebound on Earth) should be fast compared with the loading timescale.
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S2.3 Lateral flow in the ice shell
Shell thickness variations lead to flow in the lowermost, low-viscosity part of
the shell, which will tend to smooth out any such variations. For a Newtonian
fluid, the timescale (τ) for removal of variations is given by26

τ =
ηb

g∆ρδ3k2
(S4)

where ηb is the viscosity at the base of the shell, g is the acceleration due to
gravity, ∆ρ is the density contrast between the shell and the fluid underneath, δ
is the effective channel thickness in which flow occurs and k is the wavenumber
(k = l/R, where l is spherical harmonic degree and R is the planetary radius).

Assuming a linear temperature gradient and a thermal conductivity31 which
goes as c/T , where c = 567W/m, the effective channel thickness (δ) is given
by26

δ =
RgTbd

Q ln (Tb/Ts)
(S5)

where Rg is the gas constant, d is the shell thickness, Q is the activation
energy and Tb and Ts are the basal and surface temperatures, respectively.
Finally, the viscosity ηb is given by

ηb = ηref exp

[
Q

Rg

(
1

Tb
− 1

Tref

)]
(S6)

where the viscosity of ice is ηref at a reference temperature Tref . Table S2
gives τ as a function of Tb for spherical harmonic degree 3. Here, we have
assumed ηref = 1014 Pa s at Tref = 273K, Q = 60 kJ/mol, Ts = 90K, d =
100 km, g = 1.35m/s2, ∆ρ = 80 kg/m3 and R = 2575 km. For the range of
Tb values explored, δ = 3.4 km. Rheological parameters32 are subject to some
uncertainty; nonetheless, the results of Table S2 serve to illustrate the main
conclusion, which is that flow is slow if the ocean is sufficiently cold (Tb ! 220K).
A temperature of 220K corresponds to 25 wt% ammonia in a simple NH3−H2O
system33.

Table S2: Viscosity and timescale for removal of degree-3 ice shell thickness
variations as a function of temperature.

Tb (K) ηb (Pa s) τ (Myr)
273 1.0× 1014 0.55
250 1.1× 1015 6.34
230 1.4× 1016 77.6
210 2.8× 1017 1491

In practice, the rheology of ice may be non-Newtonian, in which case our
flow timescales will be underestimates26, permitting larger values of Tb. An
important consequence of non-Newtonian flow is that mode-coupling occurs: an
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initially degree-2 or degree-4 pattern (e.g., due to tidal heating) will develop a
degree-3 component as flow proceeds, thus potentially explaining the observed
degree-3 signal.

Finally, we note that if tidal heating is indeed occurring, a balance may
develop wherein shell thickness variations are being generated by tidal heating
just as quickly as lateral flow is removing those variations. Such an equilibrium
situation could be stable even if the relaxation timescales are relatively short,
again permitting higher values of Tb.

S3 Admittance
The admittance, Zl, may be thought of as the ratio between gravity and to-
pography at a particular wavelength34, and is typically measured in mGal/km.
An equivalent method makes use of the coherence between the Bouguer grav-
ity and topography35. However, as discussed below, the likelihood of gravity
disturbances originating in the silicate core leads us to prefer the admittance
technique in this case.

S3.1 Observed Admittance
We may define the cross-power spectrum Dij(l) between two fields i and j as

Dij(l) =
l∑

m=0

Ci
lmCj

lm + Si
lmSj

lm (S7)

With this definition, the estimated admittance, Z(l), and the correlation,
γ(l), between the gravity and surface topography, represented by subscripts g
and h, are as follows15

Z(l) =
Dhg(l)

Dhh(l)
(S8)

γ(l) =
Dhg(l)√

Dhh(l)Dgg(l)
(S9)

If some fraction of the gravity signal is not correlated with the surface to-
pography, then the coherence (γ2) will be less than one. However, the crucial
advantage of equation (S8) is that any such gravity noise does not affect the
estimated admittance, Z. For the case of Titan, contributions to gravity from
deeper interfaces (such as the silicate interior) are likely to be important, while
contributions to the surface topography from these processes are likely negli-
gible. An approach like that embodied in equation (S8), which is unaffected by
noisy gravity, is essential for interpreting the limited observations available at
Titan.
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S3.1.1 Monte Carlo Analysis

The admittance estimates illustrated in the main text Fig. 2 were obtained
through a Monte Carlo analysis. For each of the three gravity and three to-
pography models (nine combinations in total), the correlations and estimated
admittances were obtained from a distribution of 100,000 distinct admittance
and correlation estimates, each of which was based on gravity and topography
coefficients that were generated randomly according to the 1-σ errors in the
model coefficients. Individual correlations and admittance estimates were com-
puted according to equations (S8) and (S9).

The admittance estimated based on the Monte Carlo analysis will have a
slightly smaller magnitude than the admittance estimated directly from the
coefficients (i.e., when uncertainties are ignored). This is because, as long as
there is uncertainty in the topography coefficients, the mean of the distribution
of Dhh (see equation S7) will always be greater than the value of Dhh obtained
directly from the estimated topography coefficients (because if x is normally
distributed, then E(x2) > [E(x)]2). For example, if uncertainties are ignored,
the admittance computed directly from the SOL1a gravity3 coefficients and
the Deg6-exp topography9 coefficients is −39mGal/km, whereas when uncer-
tainties are accounted for using a Monte Carlo analysis, the mean estimated
admittance is −32mGal/km. We adopt the latter value because it is more
conservative—more negative admittances would require higher magnitudes of
erosion and/or larger elastic thicknesses.

S3.2 Model Admittance
In order to interpret the observed admittance, we require a model for how the
topography is supported. Here, we will assume that the topography is supported
by some combination of shell thickness variations and flexure7.

Gravity Anomaly

The gravity anomaly at degree l due to a thin surface layer of amplitude hl and
density ρc is given by36

∆gtl =
(l + 1)

(2l + 1)
4πGhlρc (S10)

and similarly, the gravity anomaly due to a thin layer (a "root") of thickness
rl and density contrast ∆ρ = ρm − ρc at the base of the shell, is given by

∆gbl = − (l + 1)

(2l + 1)
4πGrl∆ρ

(
1− d

R

)l+2

(S11)

where the mean thickness of the shell is d, the radius of the body is R,
and ρm is the density of the material underlying the shell (i.e., the subsurface
ocean). In the short-wavelength limit (l ≫ 1), equation (S10) reduces to the
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usual flat-plate formula, as required. When the net gravity anomaly and the
surface topography (hl) are known, the theoretical admittance is given by

Zl =
∆gtl +∆gbl

hl
(S12)

In the remainder of this development, we drop the subscripts from both h
and r and take it as understood that these parameters correspond to a specific
wavelength.

In practice, it will be difficult to observe r and therefore to compute ∆gbl
according to equation (S11). Instead, we would like to find an expression for r
in terms of h, which can be more readily observed. This is generally possible
because, for a finite elastic thickness, there will be a pressure balance between
the overburden of positive surface topography (ρcgh), the buoyancy of the root
(∆ρgr), and the restoring forces due to flexure.

Lithospheric Deflection, Cartesian case

If the deflection of the initial ice shell is w, in a Cartesian system, and if geoid
undulations are neglected for the moment, this pressure balance can be written
as

D∇4w = ∆ρgr − ρcgh (S13)

Here, D represents flexural rigidity and is given by

D =
ET 3

12(1− ν2)
(S14)

where T is the effective elastic thickness, E is Young’s modulus and ν is
Poisson’s ratio. We treat w as positive upward bending, h as positive upward
relief above the reference ice shell surface, and r as positive downward relief
from the base of the ice shell. The relationship between r and h depends on the
elastic properties of the shell and the thickness of loads applied at the top (dt)
and bottom (db) of the shell (Figure S4); dt is the thickness of material added at
the surface (a negative value would indicate erosion), and db is the thickness of
material added at the base of the ice shell (a positive value would indicate basal
freezing, a negative value, basal melting). Our model represents the equilibrium
state achieved after the lithosphere has finished deflecting in response to the
applied load(s). The model also assumes that the ice shell properties do not
change over time.

Our formulation is similar to previous work20,21, however, our sign conven-
tion differs slightly and, for simplicity, we assume that material added at the
top or bottom of the shell is also of density ρc. Our formulation also differs
in that we handle top and bottom loads simultaneously with w being the total
deflection resulting from the combined effects of top and bottom loading.
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dt

db

w

w

d

h

r

Figure S4: Illustration of the influence of top loading (pale pink material, dt)
and bottom loading (pale blue material, db) on ice shell flexure (w), surface
relief (h) and root thickness (r).

From Figure S4, we have

h = w + dt (S15)

r = db − w (S16)

Then, assuming the loads are periodic and in-phase, we can solve (S13) for
w, obtaining

w =
∆ρdb − ρcdt

ρm + µ
(S17)

Here, we have introduced a parameter, µ, which will serve as a shorthand
for the flexural rigidity at a particular wavelength and gravity. In a Cartesian
system,

µ(k) =
ET 3k4

12(1− ν2)g
(S18)

where k is a wavenumber. The advantage of using this shorthand will become
clear when we move from a Cartesian to a spherical system.

It is useful to define a compensation function, C(ρ), that expresses the degree
of compensation under flexural support compared with the case of pure isostasy.
This can be defined as the ratio of the deflection, w, according to (S17) to
the zero-rigidity deflection, w0, obtained from (S17) when µ = 0. That is,
C = w/w0, or

C(ρ) =
1

1 + µ
ρ

(S19)

When the elastic thickness, T , is zero, C = 1 (fully compensated). The
parameter ρ is the density contrast that is resisting the flexure (i.e., related to
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buoyancy, overburden pressure, or both). In the isostatic limit, ∆ρr = ρch,
whereas in the top loading case, ∆ρr = ρchC(∆ρ), while in the bottom loading
case, C(ρc)∆ρr = ρch, as we will see. The theoretical value of C = 0 corresponds
to the zero compensation case which occurs when the ice shell is infinitely rigid
(i.e., as µ → ∞). In this case, deflection (w) becomes zero (equation S17) and
so, from (S15) and (S16), h = dt and r = db. In this scenario, h and r are
independent of one another and so both dt and db must be specified in order
to predict admittance. However, as long as C > 0, there will be some finite
deflection and it will be possible to obtain r as a function of h.

If C > 0 and both h and dt are specified, then from (S15), (S16), (S17) and
(S19), it can be shown that

r =
ρch

∆ρ

[
1− dt

h

C(ρc)
+

dt
h

]
(S20)

We have factored out ρch/∆ρ in order to facilitate direct comparison with
the isostatic case and because it will be convenient to do so when calculating
admittance using (S10), (S11) and (S12). In the case where no material has been
added to the surface (i.e., dt = 0, so that loading is purely from the bottom),
this expression reduces to C(ρc)∆ρr = ρch. Similarly, it can be shown that if
loading occurs purely from the top, ∆ρr = ρchC(∆ρ).

Lithospheric Deflection, spherical case

The foregoing gives correct values for r in the Cartesian case, which is appro-
priate for short wavelengths. However, in order to interpret admittance at very
long wavelengths, we must consider the spherical case. Assuming the icy crust
behaves as a thin elastic shell of radius R, equation (S13) becomes

D∇6w+4D∇4w+ETR2∇2w+2ETR2w = R4
(
∇2 + 1− ν

)
(∆ρgr − ρcgh+ ρmghg)

(S21)
where D is as in (S14). Here, we have adopted a modified version of previous

approaches20,21, which themselves follow an earlier derivation19. The final term
in (S21) accounts for the elevation or depression of the geoid (hg, which we treat
as positive upward) that occurs with loading of the ice shell. Here, we will adopt
an approximation20 to obtain hg, namely, we assume that

(
1− d

R

)l+2 ≈ 1, and
that the geoid and gravitational acceleration do not change with depth in the
shell (as has been pointed out37, this was an implicit assumption of the previous
work20).

Having obtained hg, and using (S15) and (S16), we rewrite (S21) as

⎡

⎣
(
1− 3ρm

(2l + 1)ρ

)−1 ET

R2g

⎛

⎝
T 2(∇6+4∇4)
R212(1−ν2) +∇2 + 2

∇2 + 1− ν

⎞

⎠+ ρm

⎤

⎦w = ∆ρdb − ρcdt
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where ρ is the mean density of the body. If w is expressed in spherical
harmonics, we can replace ∇2 with −l(l + 1) and solve for w, recovering equa-
tion (S17),

w =
∆ρdb − ρcdt

ρm + µ

but with the flexural rigidity parameter now being

µ(l) =

(
1− 3ρm

(2l + 1)ρ

)−1 ET

R2g

⎛

⎝
T 2[l3(l+1)3−4l2(l+1)2]

R212(1−ν2) + l(l + 1)− 2

l (l + 1)− (1− ν)

⎞

⎠ (S22)

For a spherical system, it is also necessary to account for the ratio of surface
areas at the top and bottom of the shell (since the buoyancy of the root depends
on its volume, not its thickness). This effect complicates the derivations but it
can be shown that, if dt and h are specified, then the surface area correction
leads to

r =
ρch

∆ρ

[
1− dt

h

C(ρc)
+

dt
h

](
1− d

R

)−2

(S23)

As required, this expression reduces to the Cartesian equivalent as R →
∞. This correction also partially relaxes the simplifying assumption we made
to obtain the geoid height so that we now assume

(
1− d

R

)l ≈ 1 rather than
(
1− d

R

)l+2 ≈ 1.
Having obtained an expression for r as a function of h (which is possible as

long as C > 0), we can now substitute (S23) into (S11) and combine with (S10)
and (S12) to get an expression for admittance that depends on h and dt, but
not r

Z(l) =
(l + 1)

(2l + 1)
4πGρc

[
1−

(
1− dt

h

C(ρc)
+

dt
h

)(
1− d

R

)l
]

(S24)

Equation (S24) implicitly accounts for the root thickness (r), bottom load
thickness (db), and mantle density (ρm), such that these terms do not appear
in the final expression. Model admittance is sensitive to mantle density only
insofar as the ratio ρm/ρ influences the geoid, the effect of which is captured in
C(ρc) via (S22) and (S19).

When C = 1 (pure isostasy), (S24) reduces to

Z(l) =
(l + 1)

(2l + 1)
4πGρc

[
1−

(
1− d

R

)l
]

(S25)

and admittance will always be positive since (1− d/R)l must always be less
than 1.
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Figure S5: Admittance as a function of top load (dt, where negative dt indicates
erosion) when h = 66m, T = d = 200 km and assuming the properties listed in
Table S3.

In general (i.e., when 0 < C < 1), admittance depends on topography
(h), the amount of top and/or bottom loading (dt and/or db), as well as the
elastic thickness, T , and the mean shell thickness, d. For a given wavelength,
mean shell thickness (d), elastic thickness (T ), and a fixed, positive h, ad-
mittance is a positive linear function of dt (Figure S5) and crosses zero when

dt = h

(
1−

(
1

C(ρc)
− 1

)−1 ((
1− d

R

)−l − 1
))

. When both top and bottom

loading have taken place, and if h is known, admittance may be either positive
or negative, and is uniquely defined if either dt or db is specified.

It can be shown that, when loading occurs purely from the top (i.e., db = 0),
admittance is independent of surface relief, h, and is necessarily positive. Based
on (S24), when loading occurs purely from the bottom (i.e., dt = 0), admittance
is, again, independent of surface relief, h, and is positive as long as C(ρc) >

(1− d/R)l. For degree 3, this is always true for the parameters given in Table S3.
Hence, degree-3 admittance may be negative only if dt/h is negative (i.e., when
erosion has occurred at topographic highs) or if substantially different parameter
values are adopted. To obtain a negative degree-3 admittance with pure bottom
loading would require an increase of ∼ 30% in the ratio of Young’s modulus to
the ice shell density (E/ρc). It is also possible to obtain a negative admittance
without erosion for sufficiently large elastic thicknesses and sufficiently short
wavelengths (e.g., for l = 6 when T > 350 km, or for l = 9 when T > 200 km).
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Table S3: Parameter values assumed for admittance calculations.
Parameter Symbol Assumed Value
Poisson’s ratio for ice ν 0.25
Young’s modulus for ice E 9GPa
Crustal (ice shell) density ρc 920 kg/m3

Mantle (subsurface ocean) density ρm 1000 kg/m3

Titan’s mean density ρ 1880 kg/m3

Titan’s radius R 2575 km
Acceleration due to gravity at the surface g 1.35m/s2

S4 Results

S4.1 Degree-3 maps
Our results suggest that the negative admittance we observe at degree-3 is
the result of negative gravity anomalies from large roots dominating over the
positive gravity anomalies from the associated topography. We tested this scen-
ario by computing, everywhere over the surface of Titan, the gravity anom-
aly implied by the observed topography and then comparing the result with
the observations (Figure S6c). The gravity anomaly is obtained by multiply-
ing the observed degree-3 topography (Figure S6a) by equation (S24), assuming
T = d = 200 km and a degree-3 erosion amplitude of 293m (i.e, 293m of erosion
at the topographic peaks and 293m of deposition in the valleys). This is the
amount of erosion required to produce −39mGal/km, the admittance obtained
directly (i.e., neglecting uncertainties) from the SOL1a gravity 3 and the Deg6-
exp topography9 (see section S3.1.1). Figure S6b shows the resulting gravity
anomaly, computed everywhere over the surface. The gravity field predicted
through this procedure resembles the observed field (compare panels (b) and
(c) in Figure S6). Assuming the mantle density given in Table S3, the implied
root thickness amplitude is ∼ 1.4 km.

S4.2 Uncertainty in degree-3 erosion estimates
As illustrated in Figure S5, admittance is approximately a direct linear function
of top load. Conversely, the top load required to produce a given admittance
can be obtained by solving equation (S24) for dt:

dt = h

(
1−

(
1

C(ρc)
− 1

)−1
[(

1− Z(l)

4πGρc

(2l + 1)

(l + 1)

)(
1− d

R

)−l

− 1

])

(S26)
Based on (S26), Figure S7 shows how the implied erosion (negative dt) var-

ies with the estimated admittance given various combinations of shell thickness
(d) and elastic thickness (T ). The dashed black line corresponds to Z(3) =
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(a)

(b)

(c)

Figure S6: Degree-3 topography and gravity maps: (a) Deg6-exp topography9;
(b) gravity computed as described in section S4.1 (assuming T = d = 200 km
and 293m of erosion); (c) SOL1a gravity3.
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−32mGal/km, the admittance estimate obtained from the Monte Carlo ana-
lysis (i.e., accounting for uncertainties) based on the SOL1a gravity3 field and
the Deg6-exp topography9 solution. This is also the admittance assumed in
generating Fig. 3b in the main text. The ±11mGal/km uncertainty in that
admittance estimate (see main text Fig. 2) translates to ±81m uncertainty in
the erosion estimate when T = d = 200 km. Different combinations of T and d
lead to slightly different uncertainties, but roughly ±30% is typical.

Although, as we argued in section S2.2, the ice shell is not likely to be
entirely elastic, adopting T = d leads to more conservative estimates of the
magnitude of erosion. For example, the magnitude of erosion required to give
rise to Z(3) = −32mGal/km is ∼ 241m when we assume T = d = 200 km and
∼ 577m when we assume T = 100 km, d = 200 km.
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Figure S7: Magnitude of implied erosion as a function of admittance given
several combinations of mean shell thickness (d) and elastic thickness (T ). Neg-
ative top loads correspond to surface erosion. The dashed black line indicates
the mean admittance estimate obtained from the Monte Carlo analysis based
on the SOL1a gravity3 and the Deg6-exp topography9 (−32mGal/km).

S4.3 Effect on tidal Love number, k2
The tidal Love number, k2, of Titan has been measured3, with a 2-σ lower
bound on k2 of 0.413-0.439. It is therefore important to check that the kind
of rigid elastic lid that we are proposing does not contradict the observations.
To do so, we constructed a highly simplified model for the interior of Titan
(Table S4).

This is not meant to be realistic, but suffices to demonstrate our results.
The density structure approximately satisfies the nominal moment of inertia
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Table S4: Simple model of Titan’s interior, used to determine the effect of a
rigid shell on the tidal Love number, k2.

Layer Outer
Radius
(km)

Rigidity
(GPa)

Viscosity
(Pa s)

Density
(kg/m3)

Solid Core 2110 3 1021 2600
High-Pressure Ice 2275 3 1021 1000

Ocean 2575− d 0 0 1000
Rigid Outer Shell 2575 3 1021 920

constraint, while the low rigidity in the inner layers is designed to reproduce the
observed k2. We followed previous work38 in calculating the model k2 values.
For rigid shell thicknesses of d =5, 100 and 200 km we obtained k2 values of
0.568, 0.519 and 0.413, respectively. Hence, adding a rigid shell of thickness 100
km or 200 km reduces k2 by 9% or 27%, respectively—not enough to contradict
the observed k2 values3.

S4.4 Degree-2 admittance and fluid Love number
Degree-2 admittance analysis of Titan’s ice shell is complicated by the fact that
the body is tidally and rotationally distorted. Tidal/rotational distortion dom-
inates the degree-2 gravity signal and also makes a large contribution to the
degree-2 topography. If we assume that basal freezing, uplift and erosion pro-
cesses act similarly at degrees 2 and 3, then ice shell thickness variations should
be responsible for a portion of the observed degree-2 gravity and topography
signals.

Separating the degree-2 gravity and topography signals into their hydro-
static (i.e., tidal/rotational) and non-hydrostatic (i.e., due to ice shell thickness
variations) parts is necessarily an iterative process. We begin by estimating
Titan’s fluid Love number, h2f , from the observed degree-2 gravity signal (J2)
according to

h2f = 1 +
6

5

g

Rω2
J2 (S27)

where R is Titan’s mean radius, g is the mean surface gravity, and ω is the
angular frequency of rotation. Based on the observed gravity field3, we obtain
h2f ≈ 2.0. This allows us to predict the expected hydrostatic topography, hT

according to

hT = h2f
R2ω2

g

[
1

2

(
3 cos2 φ+ 1

) (
1− cos2 θ

)
− 5

6

]
(S28)

which we then subtract from the observed topography to get the non-hydrostatic
topography, hshell (i.e., that which is due to variations in ice shell thickness). We
then multiply hshell by equation (S24) to estimate the gravity signal due to an ice
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shell with anomalously deep roots (the large root size will be forced implicitly
by our choices of C and dt, both of which will be a function of mean shell
thickness, d and elastic thickness, T ). Having obtained this gravity anomaly
due to ice shell thickness variations (Δgshell), we conclude that the portion of
the gravity signal that is due to tidal distortion is ∆gtidal = ∆gtotal −∆gshell.
Finally, we use the newly obtained tidal gravity field to get an updated estimate
for h2f , again using (S27). After 3-4 iterations, our estimate for h2f converges
to the fourth decimal place, allowing us to separate, in a self-consistent way,
the tidal/rotational and ice shell thickness contributions to the degree-2 gravity
signal. The final estimate for h2f depends on the assumed mean shell thickness
(d) and elastic thickness (T ), as illustrated in Figure S8. If we assume that
T = 100 km and d = 200 km, then we obtain h2f ≈ 2.15 (moment of inertia
factor ∼ 0.36).
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Figure S8: Estimate for Titan’s fluid Love number, h2f , as a function of mean
shell thickness (d) and elastic thickness (T ).

Using this fluid Love number, we can estimate the non-hydrostatic portions
of the degree-2 topography and gravity signals. Figure S9 shows how the ob-
served degree-2 gravity field (a) compares with the predicted field (b), where
the predicted field is the sum of the estimated hydrostatic gravity (c), based
on h2f = 2.15, and the gravity anomaly expected from the estimated ice shell
thickness variations (d), assuming an erosion amplitude of 577m (obtained from
the main text Fig. 3b assuming T = 100 km and d = 200 km). The amplitude of
the estimated non-hydrostatic gravity is ∼ 2mGal while the estimated hydro-
static gravity amplitude is ∼ 21mGal. This is one measure of Titan’s departure
from hydrostatic equilibrium.
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(a)

(b)

(c)

(d)

Figure S9: Degree-2 gravity maps centered on the sub-Saturnian point (180°
longitude): (a) SOL1a gravity3; (b) total predicted gravity signal; (c) gravity
signal caused by tidal/rotational distortion assuming h2f = 2.15; (d) gravity
signal caused by ice shell thickness variations assuming T = 100 km and d =
200 km, and therefore 577m of erosion.
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S4.5 Degree-4 predictions
Assuming once again that the observed topography is the result of uplift due
to basal freezing and that the surface has experienced a similar magnitude of
erosion at degrees 3 and 4, we can predict the admittance at degree 4. We
first obtain the magnitude of degree-3 erosion (dt) over a range of values for T
and d from the main text Fig. 3b. Using this same value of dt for the degree-4
erosion amplitude, we then use equation (S24) to estimate the admittance over
the same range of values for T and d. Figure S10 illustrates that the degree-4
admittance should be negative if the elastic thickness, T , accounts for most of
the total shell thickness, d.

If, for example, T = d = 200 km, and we assume the same magnitude of
erosion at degrees 3 and 4 (in this case, 241m), then based on the observed
topography9 (Figure S11a), we obtain a degree-4 admittance of −5.1mGal/km
and we can compute the implied degree-4 gravity anomaly everywhere over
the surface (Figure S11b). Although the amplitudes are similar, our result is
spatially unlike the reported degree-4 gravity field3 (Figure S11c). However, as
noted in section S1.1 as well as in the main text, the degree-4 gravity field is not
currently regarded as reliable; future gravity flybys are expected to improve the
determination of the degree-4 field by a factor of two, providing a better test of
our prediction. Note that if we assume instead that T = 100 km and d = 200 km
(the corresponding erosion amplitude being 577m), the greater compensation
leads to a muted gravity signal and an admittance that approaches zero. Hence
a weak degree-4 gravity signal, or a degree-4 admittance that is positive or
only weakly negative, may be an indication that the elastic layer accounts for a
smaller portion of the total shell thickness (Figure S10).
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Figure S10: Degree-4 admittance predicted for a range of elastic thicknesses (T )
and total shell thicknesses (d).
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(a)

(b)

(c)

Figure S11: Degree-4 topography and gravity maps centered on the sub-
Saturnian point (180° longitude): (a) Topography9; (b) Predicted gravity signal
caused by ice shell thickness variations assuming T = d = 200 km and there-
fore 241m of erosion; (c) SOL1b gravity3 (not currently considered reliable at
degree 4).
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